CHALMERS

Peter Almström Technology Management and Economics

Time study and Performance rating

Volvo Flygmotor

CHALMERS

Peter Almström Technology Management and Economics

Learning objectives

- After this lecture the student will be able to ...
 - Carry out a proper time study.
 - Motivate why performance rating is necessary.
 - Use a PTS for performance rating.
 - Make a fast performance rating from a visual impression.

CHALMERS

Peter Almström Technology Management and Economics

Time study

CHALMERS

Peter Almström Technology Management and Economics

The purpose is to determine ...

Standardized work

and

Improve...

Usable time standard

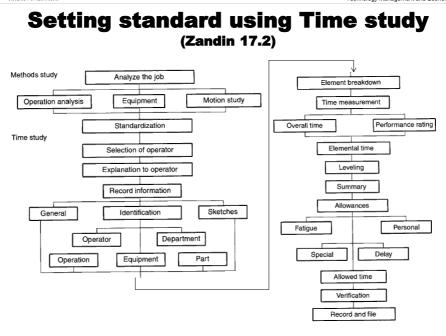
- If the time standard will be used for planning and control, it is <u>not</u> sufficient to only standardize the core activities.
- Supportive activities must be studied and standardized as well:
 - Quality control procedures
 - Materials handling, including package materials
 - Set-up work
 - Planning, reporting, etc.
 - On top of that is all the extra time Allowances
 - Personal time
 - Balance losses, waiting time
 - Disturbances

CHALMERS

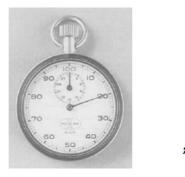
Peter Almström Technology Management and Economics

Determine time standard (for the core method)

- Estimates
- Historical records
- Work measurement
 - Time study
 - Predetermined time systems
- Must be based on <u>facts</u> not guesses


CHALMERS

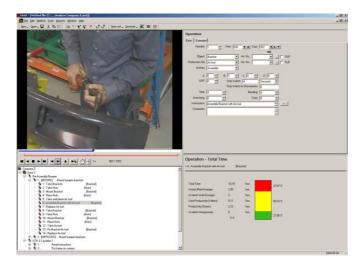
Peter Almström Technology Management and Economics


Productivity = M \times P \times U

CHALMERS

Peter Almström Technology Management and Economics

Equipment



Peter Almström Technology Management and Economics

AviX Method

CHALMERS

Peter Almström Technology Management and Economics

Time Study Form

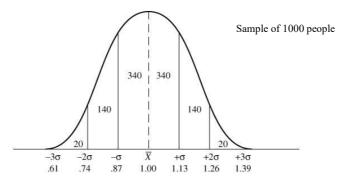
• R - Rating (performance)

- W Watch time
- OT Observed time
- NT Normal time

Time Study Observation Form							Study No: 2-85 Operation: D/E CA				
Element No. and Description		LUBRICATE DIE, INSPECT					IN FIXTURE TRIMASIDE PART				J
Note	Cycle	R	w	от	NT	R	w	от	NT	R	W
	1	90	90	30	270	90	113	23	207		
	2	100	40	27	270	100	61	21	210		
	3	90	92	31	279	90	25	23	207		
	4	85	50	35	298	100	70	20	200		
	5	100	98	28	180	100	318	20	200		
2	6	110	43	25	275	110	61	18	AB		
	7	90	92	31	279	90	416	24	216		
	8	100	44	28	280	85	68	24	204		
	9	90	Soo	32	288	10	23	23	207	1 8	
	10	110	49	26	286	105	68	19	200		
	11		20172	5902							
	12					1					
	13										
	14				1111	3					
	15										
	16										

Number of observations

- 10 cycles as rule of thumb.
- Plot times in histogram and determine if normal distributed.
- Use the average or median time.

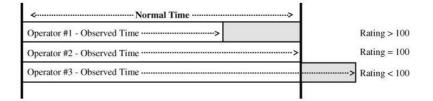

CHALMERS

Peter Almström Technology Management and Economics

Performance rating

...of people

Standard performance



CHALMERS

Peter Almström Technology Management and Economics

Rating methods

- Rating of each element or for whole task?
- Analyst need talent to do consistent ratings
- Speed vs. Precision

Performance rate depends on...

- Difficulty of work task
- Precision requirement
- Environment issues (too hot, too cold etc.)
- Skill, training

CHALMERS

Peter Almström Technology Management and Economics

Rating methods

- 1. Synthetic rating, i.e. using PTS
- 2. Speed rating

Synthetic rating

- Use predetermined times

 Performance = predetermined time / observed time
- The best method!

CHALMERS

Peter Almström Technology Management and Economics

Speed rating

- Trained to see the speed, use benchmarks
- Need experience
- Prerequisites
 - -Experience of the type of work performed.
 - Use of predetermined (synthetic) time for benchmark of at least two elements.
 - Select operator who is close to normal performance.
 - -Use mean value of three or more independant studies.

Speed Benchmarks

- 100 performance is equal to:
 - Dealing a deck of cards (52 cards) into 4 piles in 30 seconds.

or

- Walking 3 miles/h = 4.83 km/h = 1.34 m/s

CHALMERS

Peter Almström Technology Management and Economics

Performance rating exercise!

Learning objectives

- After this lecture the student will be able to ...
 - Carry out a proper time study.
 - Motivate why performance rating is necessary.
 - Use a PTS for performance rating.
 - Make a fast performance rating from a visual impression.